Modified Platelet Storage Device to Improve Quality During Storage

Nicolas Pereyra1, Helen Chen2, Kai Yu2, Jayachandran Kizhakkedathu2, and Dana Devine1

Department of Biochemistry and Molecular Biology1 and Chemistry2, University of British Columbia, Vancouver, BC, Canada

Background

Storage conditions
• Platelets are stored on 22 °C shakers for 5-7 days
• Bags are made from polyvinyl chloride (PVC) plasticized with di(2-ethylhexyl) phthalate (DEHP) (Figure 1).

Platelet Storage Lesion
• The hydrophobic surface of the bags activates platelets1.
• Storage and activation comprise the quality of the platelet concentrates, known as the Platelet Storage Lesion (PSL)2.

Bacterial Contamination
• One in 1500-2000 PCs is contaminated3.
• The bacterial screening period is 24 h., putting great strain on platelet supply and shelf-life.

Pathogen Inactivation Techniques
• Pathogen Inactivation Technologies (PITs) destroy nucleic acids.
• PITs also damage platelets, leading to faster clearance and poorer transfusion outcome4.

Objectives
1. Develop a storage bag coating which extends the shelf life of platelets.
2. Optimize the coating for Pathogen Inactivation Technologies.

Hypothesis
I hypothesize that the novel platelet storage device will increase the viable storage period of platelets treated with PITs.

Evaluating Storage Quality

Figure 4. Workflow of the platelet characterization experiments. Two apheresis platelet concentrates are mixed and split into one coated and one uncoated bag. Platelets are then stored at Canadian Blood Services standard procedure. The platelets are sampled on days 1, 2, 4, and 7. The cells are subject to a host of biochemical and cell physiology assays. Platelet activation and apoptosis are measured by immunofluorescent staining of P-selectin and phosphatidylserine, respectively. Platelet activity and metabolism is tracked through blood gas analysis of pH, pO2, pCO2, and glucose. Platelet function is assessed by rotational thromboelastometry and agregometry. Figure produced using Biorender.com.

Platelet Assessment Results

Figure 5. Results of platelet quality assays after storage in the novel coating and uncoated platelet storage bags. Platelets were pooled, split, and their quality during storage was evaluated as described in Fig. 4. For Storage Stability, platelets from coated bags showed better responsiveness (P-selectin + ADP) and displayed similar levels of P-selectin and phosphatidylserine as their uncoated counterparts. No statistically significant differences were found. For Metabolic Health, the plasma in the coated storage bags contained lower pCO2, greater pO2, and had a lower pH than the uncoated bags. No statistically significant differences were found. To evaluate the Clotting Quality of the cells (bottom row), platelets were activated with tissue factor and the clotting was measured using rotational thromboelastometry. Results showed that the platelets from the coated bag had a lower peak firmness, but also displayed a shorter time to peak firmness and the same initial clotting rate. No statistically significant differences were found. The coated platelets are shown in red, and the uncoated platelets are in blue. N=3.

Conclusion & Future Directions

Conclusions
• Preliminary results show the coating does not significantly damage the quality of the platelet throughout storage, but uncoated platelets still perform better in some aspects

Future Directions
• Assess other polymers for the platelet-friendly coating to better preserve their quality throughout storage
• Investigate the anti-bacterial capabilities of the coating
• Assess the coating’s effectiveness on PIT-treated platelets

References: