A new potential therapeutic target for type 2 diabetes: Delineating the mechanisms of its actions

Patricia O. Benedet, Nooshin Seyed Safikhan, Kevin Gonzalez, Edward M. Conway
Centre for Blood Research, Life Sciences Institute, Department of Medicine, University of British Columbia, Vancouver, Canada

BACKGROUND
- CD248 is a type I transmembrane glycoprotein belonging to the C-type lectin-like domain superfamily
- Normally expressed at low levels by cells of mesenchymal origin, CD248 is highly expressed in pre/adipocytes of white adipose tissue (WAT) [1,2]
- We previously reported that in mice and humans, WAT expression levels of CD248 are inversely correlated with WAT function, insulin sensitivity, and glucose and lipid homeostasis [2]
- Global or adipocyte-specific CD248 gene inactivation in mice protects against high fat diet (HFD)-induced obesity and insulin resistance [2]
- Our data suggested that CD248 acts as a molecular switch that induces the transition of WAT from a healthy to an unhealthy, insulin resistant state

OBJECTIVE
To delineate the mechanisms by which CD248 modulates canonical insulin signaling pathways that impact on key metabolic activities

METHODS

<table>
<thead>
<tr>
<th>NO</th>
<th>WT</th>
<th>CD248-/</th>
<th>HFD (60% fat diet) or NC (14% fat diet)</th>
<th>2 Weeks</th>
</tr>
</thead>
</table>

Preadipocytes purified
Molecular analyses
Functional assays

RESULTS

1. Proximity ligation assay (PLA): CD248 is close to the insulin receptor (IRa)

2. CD248 reduces insulin binding to the insulin receptor

3. CD248 KO eWAT has increased insulin sensitivity

4. CD248-KO WAT exhibits increased glucose uptake

5. CD248-KO adipose reduces lipolysis and protects against insulin resistance

CONCLUSION
1. CD248 binds to Insulin receptor and dampens insulin signaling
2. Lack of CD248 improves glucometabolism
 - Increases glucose uptake
 - Dampens hyperinsulinemia and lipolysis

FUTURE DIRECTIONS
1. Validate findings in humans
2. Screen compounds/antibodies to block CD248-dependent signaling in vitro and in vivo

Potential impact
1. Novel therapeutic target for type 2 diabetes

REFERENCES

CONTACTS
Patricia Benedet: patiben@gmail.com
Edward Conway: ed.conway@ubc.ca