

CATHETER ASSOCIATED VENOUS THROMBOSIS AMONG VETERANS

Barney ME¹, Gruber J², Tam A¹, Mertzel M¹, and Nguyen KP^{1,2}

- 1. Oregon Health and Sciences University, Portland, OR
 - 2. Veterans Affairs, Portland, OR

INTRODUCTION

- Millions of catheters are inserted each year for reliable venous access.
- Central venous access can be achieved through multiple modes, namely a central venous catheter (CVC) or a peripherally inserted central catheter (PICC).
- RIETE registry study in 2008 suggests that upper extremity deep vein thrombosis (UEDVT) accounts for 4.4% of all acute deep vein thrombosis (DVT) or pulmonary embolism (PE). Of these, 45% were catheter related.¹

OBJECTIVES

- 1. Assess rate of catheter associated thrombosis (CAT) post venous catheter procedure in the Veteran population
- 2. Assess rate of mortality of CAT
- 3. Identify possible risk factors for CAT

METHODS

- Retrospective electronic medical record review.
 - Inclusion: All adults in the VA VINCI Database who underwent a first-time venous catheter from 10/1/2015 to 6/1/2023.
 - Exclusion: Patients who had a venous thromboembolism (SVT, DVT, PE) in the previous 6 months to the venous catheter were excluded.
- Catheter associated thrombosis was defined as any upper extremity DVT or SVT occurring within 90 days of venous catheter procedure.

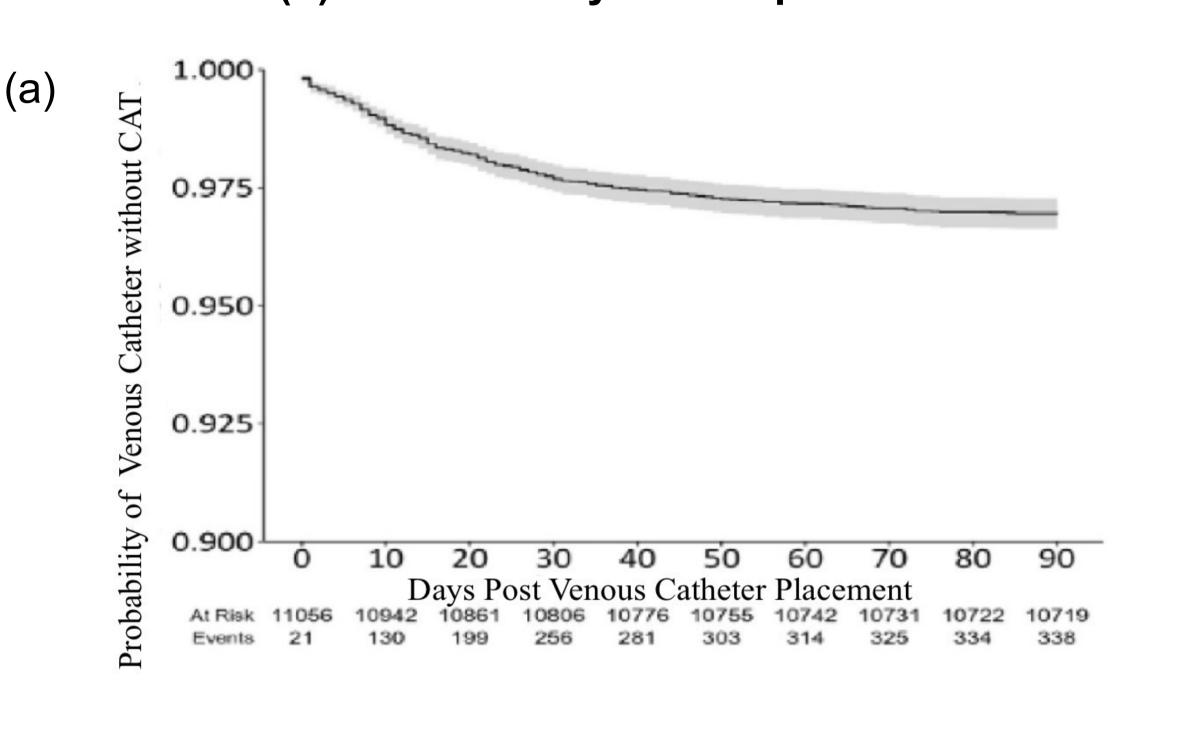

RESULTS

Table 1: Cohort's demographic and clinical characteristics.

Demographic and Clinical Characteristics	Total (N=11,056)	No CAT (N=10,718)	CAT (N=338)	P-value
	μ(σ)	μ(σ)	μ(σ)	
Age (years)	68.9 (11.5)	68.9 (11.4)	68.6 (12.2)	0.643
Body Mass Index (kg/m^2)	29.7 (7)	29.7 (6.9)	29.6 (7.5)	0.687
	N(%)	N(%)	N(%)	
Males	10503 (95)	10184 (95)	319 (94.4)	0.686
Race				
American Indian or Alaska				
Native	65 (0.6)	62 (0.6)	3 (0.9)	0.464
Asian	57 (0.5)	54 (0.5)	3 (0.9)	0.332
Black or African American	2256 (20.4)	2163 (20.2)	93 (27.5)	0.004
Mixed Race	79 (0.7)	75 (0.7)	4 (1.2)	0.299
Native Hawaiian or Other				
Pacific Islander	58 (0.5)	57 (0.5)	1 (0.3)	0.554
Unknown	621 (5.6)	605 (5.6)	16 (4.7)	0.474
White	7920 (71.6)	7702 (71.9)	218 (64.5)	< 0.001
History of Diabetes	2041 (18.5)	1969 (18.4)	72 (21.3)	0.195
History of Renal Disease	1753 (15.9)	1673 (15.6)	80 (23.7)	< 0.001
History of Peripheral Arterial	` '		` '	
Disease	427 (3.9)	414 (3.9)	13 (3.8)	1.000
History of Cancer	560 (5.1)	532 (5)	28 (8.3)	0.009
Anticoagulation	1414 (12.8)	1374 (12.8)	40 (11.8)	0.652
Antiplatelet Therapy Note: Patients avera included in	3446 (31.2)	3351 (31.3)	95 (28.1)	0.240

Note: Patients were included in the anticoagulation and antiplatelet therapy groups if they were on these medications within the previous 6 months.

Figure 1: The progression of the probabilities of venous catheter placement without (a) and survival (b) within 90 days of the procedure.

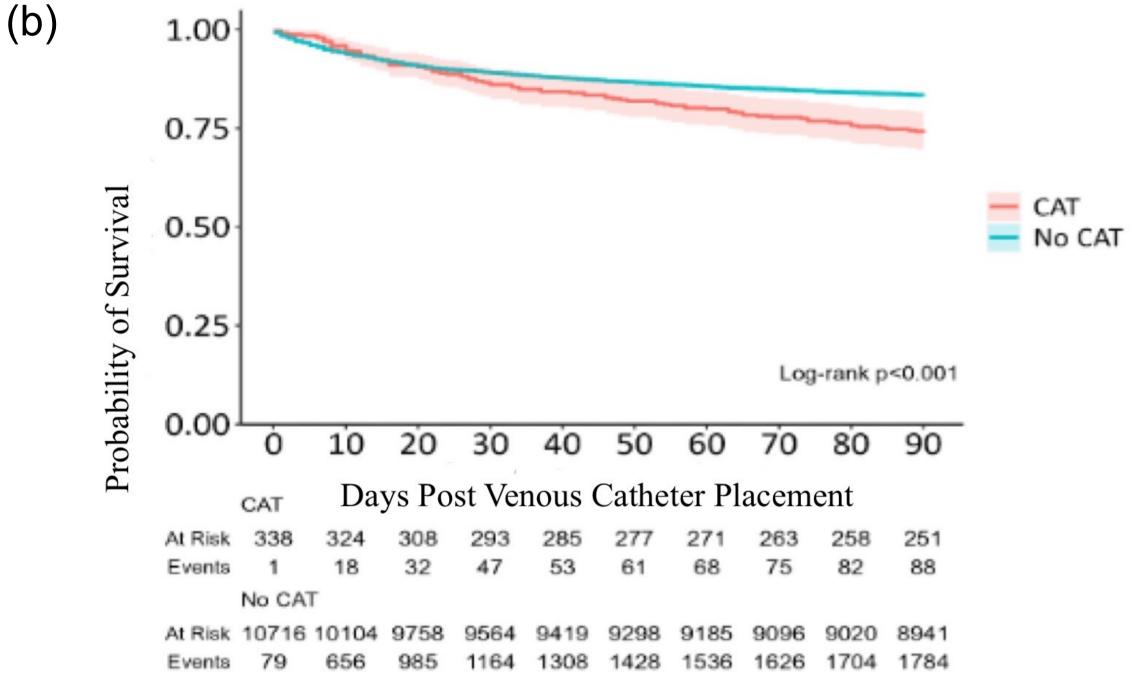
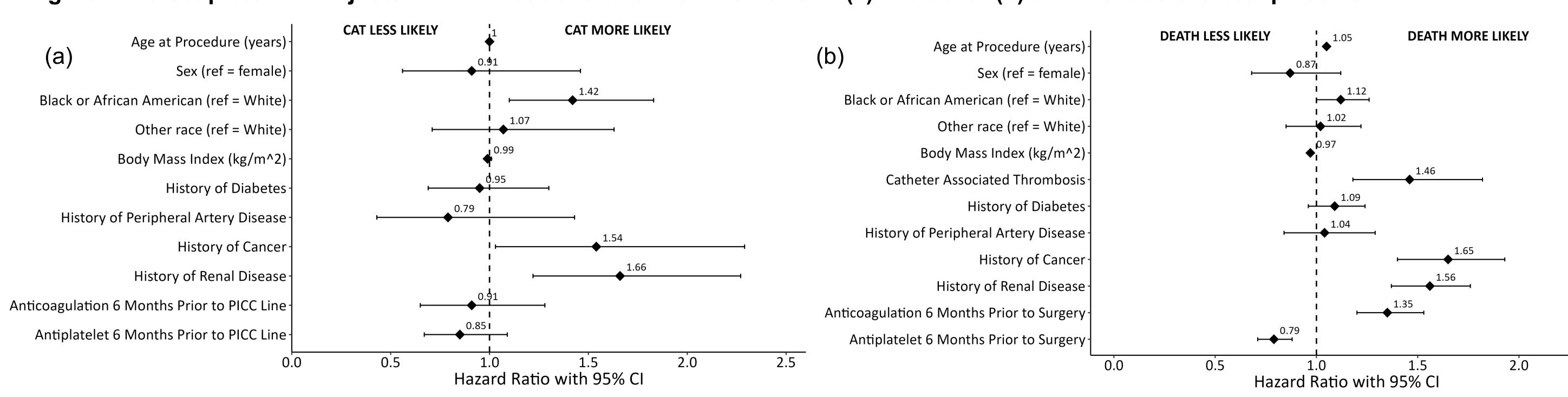



Figure 2: Forest plots with adjusted hazard ratios for the likelihood of CAT (a) and death (b) after venous catheter placement.

CONCLUSIONS

- Variables that increase the risk of developing CAT include:
 - Black or African American race
 - History of renal disease
 - History of cancer
- CAT increases the likelihood of death after venous catheter placement
 - Additional research on the benefit of prophylactic anticoagulation is warranted
- Prevention
 - Patients with UEDVT and a history of venous catheter placement were more likely to have a history of recent hospitalization, surgery, severe infection, intensive care unit discharge, intubation, or fracture²
 - Important to consider prevention while managing patients with long-term intravenous access

REFERENCES

- 1. Munoz, F.J., et al., Clinical outcome of patients with upper-extremity deep vein thrombosis: results from the RIETE Registry. Chest, 2008. 133(1): p. 143-8.
- Spencer FA, Emery C, Lessard D, Goldberg RJ; Worcester Venous Thromboembolism Study. Upper extremity deep vein thrombosis: a community-based perspective. Am J Med. 2007;120(8):678-684. doi:10.1016/j.amjmed.2006.06.046
- 3. Turcotte, S., S. Dube, and G. Beauchamp, Peripherally inserted central venous catheters are not superior to central venous catheters in the acute care of surgical patients on the ward. World J Surg, 2006. 30(8): p. 1605-19.
- 4. Chopra, V., et al., The risk of bloodstream infection associated with peripherally inserted central catheters compared with central venous catheters in adults: a systematic review and meta-analysis. Infect Control Hosp Epidemiol, 2013. 34(9): p. 908-18.
- 5. Liem, T.K., et al., Peripherally inserted central catheter usage patterns and associated symptomatic upper extremity venous thrombosis. J Vasc Surg, 2012. 55(3): p. 761-7.
- Deere, M., A. Singh, and B. Burns, Central Venous Access of the Subclavian Vein, in StatPearls. 2023: Treasure Island (FL).