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Fig.1.  Cell migratory phenotypes are heterogenous. (A) Quantitative analysis of averaged migration speed 
(motility) of single cells treated in starvation (no fetal bovine serum (FBS)), or in culture medium (with 10%FBS), 
or in stimulation (10%FBS + 10 ng/mL TNF-ꭤ ) in 12 hours. N=6 independent microwells, M=300 single 
cells/treatment, and the data were analyzed using one-way ANOVA with Tukey's test *p<0.05; **p<0.01; 
**p<0.001. (B) Cell major axis changes in cells with different mobility. Cells are categorized into 3 migratory phe-
notypes. N=400 single cells from 8 independent microwells. (C) The time-lapse images of representative single 
cells of each type (left) and their trajectory maps (right). The circles in the map indicate the initial location of cells 
(t=0 hour) and the arrows point to their locations 1 hour later.

Fig.2 High-motility cells (averaged speed > 20 µm/hour) exhibit distinct preferences in migration directions 
and regions. (A) Schematics of the turning angle measurements to quantify cell direction changes. (B) The distribu-
tions of two consecutive turning angles (|θ1| and |θ2|) that were measured after each time point (N=1490 data points). 
(C) Monitoring the turning angles in cells that consistently moved either in an anticlockwise or clockwise direction 
across the entire 12-hour period (N ≥ 20 single cells/group). Scale bar = 20 µm. (D) The motility (averaged migration 
speed) of cells migrating consistently, and the rest of cells that migrating inconsistently in 12 hours. N ≥ 50 single 
cells/group. (E) Cumulative frequency of the distance between cell centroids to the nearest wall of the nanowell at 
every time point. Inserted: Schematic definition of two regions of equal area: the center region and the wall region. (F) 
Cell migration speeds inside the wall region only, in the center region only, and in the transition between the two re-
gions (N ≥ 130/group). All data were analyzed using one-way ANOVA with Tukey's test *p<0.05; **p<0.01; ***p<0.001.
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Fig.3 Visible cell features in images are associated with the cellular mobility states. (A) The architecture 
of the convolutional neural network model to analyze cell images. The input image dimensions, feature map di-
mensions and the numbers of neurons in the last two dense layers are shown. (B) Example input images of 
motile cells in the idle state and moving state. (C) Confusion matrix obtained from our modelling on the testing 
dataset. (D) Randomly selected cell images (left) and their saliency maps (right). The saliency maps highlighted 
the pixels that contributed to the model prediction. The strength of the contribution is indicated by the color 
scale. 
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• We developed a high-throughput nanowell-in-microwell assay and an analysis software to characterize 
the mobility and morphology features of single cells.

• This assay enables us to demonstrate phenotypic heterogeneity in breast cancer cell migration.
• Breast cancer cells exhibit distinct preferences in migration directions and regions.
• Their cell mobility state is associated with cellular morphology, which could be used to identify cells at idle 

or moving state.

We developed a single-cell mobility analysis tool capable of characterizing cell migration features, which could 
be further used for drug testing and cancer development predicting.  

•  Nanowell-in-microwell device fabrication:
- (a) spin-coat a layer of UV-curable pre-polymer on a glass slide, 
- (b) pattern nanowells using UV light and a photomask,
- (c) wash out uncured pre-polymer to leave cured nanowells on the glass,
- (d)-(e) assemble the glass with a well plate frame.

• Nanowell dimension: 75×75×60 µm (length× width× height) 
• Breast cancer cell (MDA-MB-231) seeding, treating, staining (Calcein, AM) and imaging in nanowells.
• Image data processing

Image data processing

Identify live cells

Customer-designed software
Extract single cells
  (1 cell/nanowell)

Segment single-cell 
          nanowells

  Measure single-cell 
position and morphology

Metastatic cancer is characterized by the spread of cancer cells from their primary site to distant 
organs or tissues, significantly complicating treatment and prognosis. Various cell migration 
assays were devised to identify tumor subpopulations capable of initiating the tumor metastatic 
cascade. However, the accurate tracking of single cells continues to face significant challenges, 
primarily due to the limitations in technologies for single-cell isolation and tracking.

To tackle this challenge, we engineered a high-throughput assay for analyzing the mobility of in-
dividual cells. Employing this assay on breast cancer cells with time-lapse imaging at a reduced 
sampling rate, we systematically assessed thousands of individual cells in three different micro-
environments. This systematic analysis enabled us to characterize their migration behaviors, dy-
namic morphological features, and mobility states, thereby shedding light on the diverse charac-
teristics and behaviors of cancer cells during the migration process.


